Package: cia 1.0.0.9000
Mathew Varidel
cia: Learn and Apply Directed Acyclic Graphs for Causal Inference
Causal Inference Assistance (CIA) for performing causal inference within the structural causal modelling framework. Structure learning is performed using partition Markov chain Monte Carlo (Kuipers & Moffa, 2017) and several additional functions have been added to help with causal inference. Kuipers and Moffa (2017) <doi:10.1080/01621459.2015.1133426>.
Authors:
cia_1.0.0.9000.tar.gz
cia_1.0.0.9000.zip(r-4.5)cia_1.0.0.9000.zip(r-4.4)
cia_1.0.0.9000.tgz(r-4.4-any)
cia_1.0.0.9000.tar.gz(r-4.5-noble)cia_1.0.0.9000.tar.gz(r-4.4-noble)
cia_1.0.0.9000.tgz(r-4.4-emscripten)
cia.pdf |cia.html✨
cia/json (API)
NEWS
# Install 'cia' in R: |
install.packages('cia', repos = c('https://spaceodyssey.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/spaceodyssey/cia/issues
Last updated 5 days agofrom:0d2ba0af3a. Checks:OK: 5. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 18 2024 |
R-4.5-win | OK | Nov 18 2024 |
R-4.5-linux | OK | Nov 18 2024 |
R-4.4-win | OK | Nov 18 2024 |
R-4.4-mac | OK | Nov 18 2024 |
Exports:BNLearnScorerCalculateAcceptanceRatesCalculateEdgeProbabilitiesCalculateFeatureMeanCollectUniqueObjectsCreateScorerDAGtoCPDAGDAGtoPartitionDefaultProposalFlattenChainsGetEmptyDAGGetIncrementalScoringEdgesGetLowestPairwiseScoringEdgesGetMAPMutilateGraphPartitionMCMCPartitiontoDAGPlotConcordancePlotCumulativeMeanTracePlotScoreTracePostProcessChainsSampleChainsSampleEdgeProbabilitiesSamplePosteriorPredictiveChainsScoreDAGScoreLabelledPartitiontoBNLearntogRaintoMatrixUniformlySampleDAG
Dependencies:arrangementsbackportsbnlearnbroomclicodetoolscolorspacecpp11doParalleldplyrfansifarverfastmatchforeachgenericsggplot2gluegmpgRaingRbasegtableigraphisobanditeratorslabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepatchworkpillarpkgconfigpurrrR6RColorBrewerRcppRcppArmadilloRcppEigenrlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr